Harmonic Oscillator Coherent States

^{1D quantum}
harmonic oscillator
$$\hat{\mathcal{H}} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2} \hat{x}^2 \qquad -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} + \frac{1}{2}m\omega^2 x^2\psi(x) = E\psi(x)$$
$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \text{ where } n = 0, 1, 2, 3, ..., \qquad \psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-m\omega^2 x^2/2\hbar}$$

$$\hat{a}_{+} = \frac{1}{\sqrt{2m\hbar\omega}} (-i\hat{p} + m\omega\hat{x}); \quad \hat{a}_{-} = \frac{1}{\sqrt{2m\hbar\omega}} (+i\hat{p} + m\omega\hat{x})$$
Adopting the notation of Griffiths QM, 3rd edition

$$\begin{aligned} \hat{a}_{+}\psi_{n}(x) &= \sqrt{n+1} \psi_{n+1}(x) \\ \hat{a}_{-}\psi_{n}(x) &= \sqrt{n} \psi_{n-1}(x) \\ \widehat{N}\psi_{n} &= \hat{a}_{+}\hat{a}_{-}\psi_{n} = n\psi_{n} \\ \widehat{\mathcal{H}} &= \hbar\omega \left(\hat{a}_{+}\hat{a}_{-} + \frac{1}{2}\right) \end{aligned} \qquad \begin{bmatrix} \hat{a}_{-}, \hat{a}_{+} \end{bmatrix} = \mathbf{1} \\ \psi_{n}(x) &= \frac{1}{\sqrt{n!}}(\hat{a}_{+})^{n}\psi_{0}(x) \end{aligned}$$

Coherent State of the Quantum Harmonic Oscillator

$$|\alpha\rangle = C\left(\psi_0(x) + \frac{\alpha}{\sqrt{1!}}\psi_1(x) + \frac{\alpha^2}{\sqrt{2!}}\psi_2(x) + \frac{\alpha^3}{\sqrt{3!}}\psi_3(x) + \cdots\right)$$

 α is an arbitrary complex number

 $C = e^{-|\alpha|^2/2}$ by normalization

The state can also be written as: $|\alpha\rangle = e^{-|\alpha|^2/2} e^{\alpha \hat{a}_+} |0\rangle$

This state is an eigenfunction of the annihilation operator $\hat{a}_{-}|\alpha\rangle = \alpha |\alpha\rangle$ $\langle \alpha | \hat{a}_{-} | \alpha \rangle = \alpha$

 $\langle \alpha | \hat{a}_+ \hat{a}_- | \alpha \rangle = | \alpha |^2 = \langle n \rangle$ the mean number of excitations in the coherent state

The uncertainty in the number of particles: $\Delta n = \sqrt{\langle n^2 \rangle - \langle n \rangle^2} = |\alpha|$

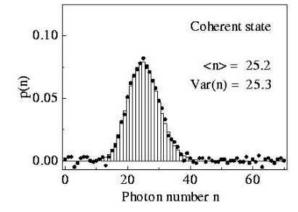
Coherent states do not have a fixed number of particles. However $\frac{\Delta n}{n} = \frac{1}{\sqrt{n}} \rightarrow 0$ in the thermodynamic limit

Coherent State of the Quantum Harmonic Oscillator

Statistical distribution of the occupation number $\langle n \rangle = |\alpha|^2$

$$P(n) = \left| \langle n \mid \alpha \rangle \right|^2 = \frac{|\alpha|^{2n} e^{-|\alpha|^2}}{n!}$$

Poisson distribution



The probability of detecting n photons, the photon number distribution, of a coherent state. As is necessary for a <u>Poissonian distribution</u> the mean photon number is equal to the <u>variance</u> of the photon number distribution. Bars refer to theory, dots to experimental values.

https://en.wikipedia.org/wiki/Coherent state

$$|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{(\alpha a^{\dagger})^n}{n!} |0\rangle$$

Coherent State of the Quantum Harmonic Oscillator

If we write: $\alpha = |\alpha|e^{i\theta}$ then,

$$|\alpha\rangle = e^{-|\alpha|^2/2} \left(\psi_0(x) + e^{i\theta} \frac{|\alpha|}{\sqrt{1!}} \psi_1(x) + e^{i2\theta} \frac{|\alpha|^2}{\sqrt{2!}} \psi_2(x) + \cdots \right)$$

Note that the same phase θ appears in each term (coherent state), as opposed to a randomly fluctuating phase in each term (incoherent state)

One can show that the θ -derivative is equivalent to the number operator: $\frac{1}{i} \frac{\partial}{\partial \theta} |\alpha\rangle = \hat{n} |\alpha\rangle$

Hence we can define: $\hat{n} = \frac{1}{i} \frac{\partial}{\partial \theta}$, hence the number and phase of the wavefunction are conjugate variables

There is a resulting uncertainty relation: $\Delta n \Delta \theta \ge \frac{1}{2}$

The coherent state $|\alpha\rangle$ is a superposition of all possible occupation numbers, with Δn large, hence it must have $\Delta \theta \rightarrow 0$